Existem tantos números que é preciso organizá-los em conjuntos, os Conjuntos Numéricos. Cada conjunto tem como elementos todos os números que guardam entre si algumas características em comum. Tendo conhecimento sobre esses conjuntos é possível fazer operações e resolver problemas.
Temos então os seguintes conjuntos numéricos:
- Conjunto dos números Naturais
- Conjunto dos números Inteiros
- Conjunto dos números Racionais
- Conjunto dos números Irracionais
- Conjunto dos números Reais
- Conjunto dos números Complexos
São todos os números inteiros positivos, incluindo o zero. É representado pela letra maiúscula N.
Caso queira representar o conjunto dos números naturais não-nulos (excluindo o zero), deve-se colocar um * ao lado do N:
N = {0,1,2,3,4,5,6,7,8,9,10, …}
N* = {1,2,3,4,5,6,7,8,9,10,11, …}
Conjunto dos Números Inteiros
São todos os números que pertencem ao conjunto dos Naturais mais os seus respectivos opostos (negativos).
São representados pela letra Z:
Z = {… -4, -3, -2, -1, 0, 1, 2, 3, 4, …}
O conjunto dos inteiros possui alguns subconjuntos, eles são:
- Inteiros não negativos
São todos os números inteiros que não são negativos. Logo percebemos que este conjunto é igual ao conjunto dos números naturais.
É representado por Z+:
Z+ = {0,1,2,3,4,5,6, …}
- Inteiros não positivos
São todos os números inteiros que não são positivos. É representado por Z-:
Z- = {…, -5, -4, -3, -2, -1, 0}
- Inteiros não negativos e não-nulos
É o conjunto Z+ excluindo o zero. Representa-se esse subconjunto por Z*+:
Z*+ = {1, 2, 3, 4, 5, 6, 7, …}
Z*+ = N*
- Inteiros não positivos e não nulos
São todos os números do conjunto Z- excluindo o zero. Representa-se por Z*-.
Z*- = {… -4, -3, -2, -1}
Conjunto dos Números Racionais
Os números racionais é um conjunto que engloba os números inteiros (Z), números decimais finitos (por exemplo, 743,8432) e os números decimais infinitos periódicos (que repete uma sequência de algarismos da parte decimal infinitamente), como “12,050505…”, são também conhecidas como dízimas periódicas.
Os racionais são representados pela letra Q.
Conjunto dos Números Irracionais
É formado pelos números decimais infinitos não-periódicos. Um bom exemplo de número irracional é o número PI (resultado da divisão do perímetro de uma circunferência pelo seu diâmetro), que vale 3,14159265 …. Atualmente, supercomputadores já conseguiram calcular bilhões de casas decimais para o PI. Também são irracionais todas as raízes não exatas, como a raiz quadrada de 2 (1,4142135 …)
Conjunto dos Números Reais
É formado por todos os conjuntos citados anteriormente (união do conjunto dos racionais com os irracionais).
Representado pela letra R.
Conjunto dos Números Complexos
É formado pelo número imaginário na forma bi, sendo b um número real e i a parte imaginária, para resolver problemas do tipo:
Para isso foi criado uma relação fundamental:
Forma algébrica
A forma algébrica pela qual representaremos um número complexo será a + bi, como a e b Є R.
A forma algébrica de representar um número complexo é mais prática e mais utilizada nos cálculos.
Definindo as partes que formam um número complexo z = a + bi.
z é um número complexo qualquer.
a é a parte real do número complexo z.
b é a parte imaginária do número complexo z.
O conjunto dos números que formam a parte real é representado por Re (z).
O conjunto dos números que formam a parte imaginária é representado por Im (z).
Veja alguns exemplos de como identificar a parte real e a parte imaginária de um número complexo:
z = -5 + 10i
Re(z) = -5
Im(z) = 10
z = 1/2 + (1/3)i
Re(z) = 1/2
Im(z) = 1/3
As coordenadas a e b podem assumir qualquer valor real, dependendo do valor que eles assumirem o número complexo irá receber um nome diferente:
Quando a e b forem diferentes de zero dizemos que o número complexo é imaginário:
z = 2 + 5i
Quando o valor de a é igual a zero e o de b é diferente de zero dizemos que o número complexo é imaginário puro:
z = 0 + 2i
z = 2i
Quando a diferente de zero e b igual a zero dizemos que o número complexo será real.
z = 5 – 0i
z = 5
A forma algébrica de representar um número complexo é mais prática e mais utilizada nos cálculos.
Definindo as partes que formam um número complexo z = a + bi.
z é um número complexo qualquer.
a é a parte real do número complexo z.
b é a parte imaginária do número complexo z.
O conjunto dos números que formam a parte real é representado por Re (z).
O conjunto dos números que formam a parte imaginária é representado por Im (z).
Veja alguns exemplos de como identificar a parte real e a parte imaginária de um número complexo:
z = -5 + 10i
Re(z) = -5
Im(z) = 10
z = 1/2 + (1/3)i
Re(z) = 1/2
Im(z) = 1/3
As coordenadas a e b podem assumir qualquer valor real, dependendo do valor que eles assumirem o número complexo irá receber um nome diferente:
Quando a e b forem diferentes de zero dizemos que o número complexo é imaginário:
z = 2 + 5i
Quando o valor de a é igual a zero e o de b é diferente de zero dizemos que o número complexo é imaginário puro:
z = 0 + 2i
z = 2i
Quando a diferente de zero e b igual a zero dizemos que o número complexo será real.
z = 5 – 0i
z = 5